
How to Analyze the Performance

of Parallel Codes 101

A Case Study with Open|SpeedShop

Half Day Tutorial @ SciDAC 2010

Chattanooga, TN

Tutorial @ SciDAC 2010

Why this tutorial?

Performance Analysis is becoming

more and more important
 Complex architectures

 Complex applications

 Mapping applications onto architectures

Often hard to know where to start
 Which experiments to run first?

 How to plan follow on experiments?

 What kind of problems can be explored?

 How to interpret the data?

Tutorial Goals

Provide basic guidance on …
 How to understand the performance of a code?
 How to answer basic performance questions?
 How to plan experiments?

Basics on Open|SpeedShop
 Introduction into one possible solution
 Basic usage instructions
 Pointers to additional documentation

Provide you with the ability to …
 Run these experiments on your own code
 Provide starting point for performance

optimizations

Why Open|SpeedShop?

Open Source Performance Analysis Tool Framework
 Most common performance analysis steps all in one tool

 Extensible by using plugins for data collection and representation

Flexible and Easy to use
 User access through GUI, Command Line, and Python Scripting

Several Instrumentation Options
 All work on unmodified application binaries

 Offline and online data collection / attach to running applications

Target: Cluster systems and MPPs
 Linux Clusters with x86, IA-64, Opteron, and EM64T CPUs

 ADD BG/P & XT PORT

Status & Availability
 Version 1.9.3.4 about to be released / working on large lab codes

 Distribution and CVS access available through sourceforge.net

“Rules”

Let’s keep this interactive

 Feel free to ask as we go along

 Online demos as we go along

Feedback on O|SS

 What is good/missing in the tool?

 What should be done differently?

 Please report bugs/incompatibilities

Presenters

Martin Schulz, LLNL

Don Maghrak, Krell

Larger Team:

 Jim Galarowicz, Krell

 David Montoya, LANL

 Mahesh Rajan, Sandia

 William Hachfeld & Dave Whitney, Krell

 Samuel Gutierrez & Dane Gardner, LANL

 Scott Cranford & Joseph Kenny, Sandia NLs

 Chris Chambreau, LLNL

Outline

 Concepts in performance analysis

 Introduction into Open|SpeedShop

 How to understand profiles?

 How to relate data to architectural properties?

 How to find I/O bottlenecks?

 How to find bottlenecks in parallel codes?

 How can I repeat this at home?

What else can I do with O|SS?

Section 1

Concepts in Performance Analysis

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Development Cycle

Performance Tuning is an

essential part of development
 Part of development cycle

 Potential impact on every stage

 Should be done from initial stages

of code development

Typical use
 Measure performance

 Analyze data

 Modify code and/or algorithm

 Repeat measurements

 Analyze differences

Coding

Debugging

Tuning

Algorithm

Code/Binary

Correct Code

EfficientCode

Available Support

First line of defense
 Full execution timings

 Comparison between input parameters

 Historical trends

Disadvantage
 Coarse grain measurements

 Can‟t pin performance bottlenecks

 Alternative: code integration
Hard to maintain

Requires in-depth, a-priori code knowledge

Need for performance analysis tools

What Can Tools Do For You?

Gather fine grain performance data
 Low intrusive instrumentation

 Adaptive granularity

Relation to source code
 Connect performance to source lines

 Enable root cause analysis

But: usage is often a “black art”
 Many options and usage scenarios

 Interpretation of results often not intuitive

Questions: Sequential runs

Identify computational parts
 Where am I spending my time?

 Does this match intuition / computational kernels?

Impact of cache hierarchies
 Do I have excessive cache misses?

 How is my data locality?

 Impact of TLB misses?

External resources
 Is my I/O efficient?

 Shared libraries?

CPU

L1 Cache

L2 Cache

Main Memory

Memory

Questions: MPI Codes

Distributed memory model
 Sequential optimizations for each task

 Inter-process message optimizations

Issues to look for:
 Long blocking times

 High message rates

 Global collective operations

Node

Memory

Node

Memory

Application

MPI Library

NIC

Questions: Threaded Codes

Shared memory model
 Single shared storage accessible from all CPUs

 Most common models: POSIX threads, OpenMP

 Locality optimizations apply

Issues to look for:
 Shared memory buses/bandwidth

 Synchronization overhead

 Thread startup

 Sufficient work per thread?

Complications:
 NUMA architectures

Memory allocation policy?

 Architectural differences

CPU

L1

L2 Cache

Main Memory

CPU

L1

Two Types of Tools

Sampling Experiments
 Periodically interrupt run and record location

 Report statistical distribution of these locations

 Data aggregated over time

 Typically provides good overview

 Overhead mostly low and uniform

Tracing Experiments
 Gather and store individual application events,

e.g., function invocations (MPI, I/O, …)

 Keep timing information

 Provides detailed, low-level information

 Higher overhead, potentially bursty

Analysis Frameworks

All analysis options in one “box”
 Different experiments

 Combine tracing and sampling

 Integrated analysis options

 Uniform access to storing data

Advantage:
 Integrate into workflow only once

 Lower learning curve

 Reuse source annotations

 Easier installation and maintenance

Instrumentation Options

Instrumentation
 How to add data acquisition into codes?

 Integral part of any tools

Binary methods
 Library preloading/function interception

 Static binary rewriting

 Dynamic binary instrumentation

Source code methods
 Explicit user annotations

 Source-to-source transformation

 Compiler flags

Existing Tools

Basic OS tools
 time, gprof

Hardware counters
 PAPI APIs & tool set

 hwctime (AIX)

TAU (U. of Oregon)
 Comprehensive tool set

 Automatic source code

instrumentation

 3D visualization

HPC Toolkit (Rice)
 Binary preloading

 Sampled measurements

Scalasca (Juelich)
 Profiling

 Automatic trace analysis

Vendor tools
 Cray Pat

 Vtune (Intel)

 HPCToolkit (IBM)

Specialize tools
 Paradyn (U. of Wisc.)

Adaptive instrumentation

 Libra (LLNL)

Load balance analysis

Open|SpeedShop

How to Pick a Tool

Define the questions you want answered
 Overview vs. detailed measurements?

 What part of the system to look at?

 Needed: suspicion about ill-performing codes

Instrumentation approach
 Convenience wrt. workflow

 Affordable overhead

Frameworks
 Experiments vs. new tool

 Extent of planned performance analysis

 Generally lower learning curve overall

Section 2

Introduction into Open|SpeedShop

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Results

Experiment Workflow

R
u

n
Application

“Experiment”

Results can be

displayed using

several “Views”

Process

Management

Panel

Consists of one

or more data

“Collectors”

Stored in SQL

database

High-level Architecture

GUI pyO|SSCLI

AMD and Intel based clusters/SSI using Linux

CLI

Open Source

Software

Code

Instrumentation

E
x
p

e
rim

e
n

ts

Basic Interface

Step 1:
 Gather data from command line

 Example: osspcsamp “<application>”

 Create database

Step 2:
 Analyze data

in GUI

 Simple

graphics

 Relation to

source code

Advanced Interfaces

Scripting language
 Batch interface

 O|SS command line (CLI)

Python module

Experiment Commands

expAttach

expCreate

expDetach

expGo

expView

List Commands

list –v exp

list –v hosts

list –v src

Session Commands

setBreak

openGui

import openss

my_filename=openss.FileList("myprog.a.out")

my_exptype=openss.ExpTypeList("pcsamp")

my_id=openss.expCreate(my_filename,my_exptype)

openss.expGo()

My_metric_list = openss.MetricList("exclusive")

my_viewtype = openss.ViewTypeList("pcsamp”)

result = openss.expView(my_id,my_viewtype,my_metric_list)

Performance Experiments

Concept of an Experiment
 What to measure and analyze?

 Experiment chosen by user

 Any experiment can be applied to any code

Consists of Collectors and Views
 Collectors define specific data sources

Hardware counters

Tracing of library routines

 Views specify data aggregation and presentation

 Multiple collectors per experiment possible

Sampling Experiments

PC Sampling (pcsamp)
 Record PC in user defined time intervals

 Low overhead overview of time distribution

User Time (usertime)
 PC Sampling + Call stacks for each sample

 Provides inclusive & exclusive timing data

Hardware Counters (hwc, hwctime)
 Sample HWC overflow events

 Access to data like cache and TLB misses

 Default event is PAPI_TOT_CYC overflows

Tracing Experiments

I/O Tracing (io, iot)
 Record invocation of all POSIX I/O events

 Provides aggregate and individual timings

MPI Tracing (mpi, mpit, mpiotf)
 Record invocation of all MPI routines

 Provides aggregate and individual timings

Floating Point Exception Tracing (fpe)
 Triggered by any FPE caused by the code

 Helps pinpoint numerical problem areas

Parallel Experiments

O|SS supports MPI and threaded codes
 Tested with a variety of MPI implementation

 Thread support based on POSIX threads

 OpenMP supported through POSIX threads

Any experiment can be parallel
 Automatically applied to all tasks/threads

 Default views aggregate across all tasks/threads

 Data from individual tasks/threads available

Specific parallel experiments (e.g., MPI)

Running a First Experiment

① Picking the experiment
 What do I want to measure?

 We will start with pcsamp to get a first overview

② Launching the application
 How do I control my application under O|SS?

 osspcsamp “mpirun –np 2 smg2000 –n 80 80 80”

③ Storing the results
 O|SS will create a database

 Name: smg2000-pcsamp.openss

④ Exploring the gathered data
 O|SS will print default output

 Open GUI to analyze data in detail (run: openss)

Example Run with Output

osspcsamp “./smg2000 –n 80 80 80”

Example Run with Output

osspcsamp “./smg2000 –n 80 80 80”

Default Data View

Toolbar to switch Views

Performance Data

Default view: by Function

(Data is sum from all

processes and threads)

Graphical Representation

Statements Data View

Performance Data

S-icon: Statement View

Statement in Program

that took the most time

Associate Source & Data

Selected performance

data point

Double click to open

source window

Use window controls

to split/arrange windows

Summary

Open|SpeedShop is a comprehensive

framework for performance analysis
 Binary instrumentation at runtime

 Support for profiling and tracing

Predefined experiments
 Flat & Context profiles, hardware counters

 MPI, I/O, FPE tracing

Multiple user interfaces
 GUI, Batch, Interactive, Python

 Fully compatible

Section 3

How to Understand Profiles?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Using Profiles

What is a profile?

 Aggregate measurements (during collection)

 Over time and code sections

Why use a profile?

 Reduced size of performance data

 Typically collected with low overhead

 Provides good overview of performance

Disadvantages

 Require a-priori definition of aggregation

 Omits performance details of individual events

 Possible sampling frequency skew

Standard Profiling Techniques

Statistical Performance Analysis
 Interrupt execution in periodic intervals

 Record location of execution (PC value)

 Optionally annotate with additional data
Stack traces

Hardware counters

 Count equivalent samples

Advantages
 Low Overhead

 Low Perturbation

 Good to Get Overview / Find Hotspots

Sampling Experiments in O|SS

PC Sampling

 Approximates CPU Time For Line and Function

 No Call Stacks

 Script: osspcsamp

User Time

 Inclusive vs. Exclusive Time

 Includes Call stacks

 Script: ossusertime

HW Counters

 Samples Hardware Counter Overflows

 Script: osshwc and osshwctime (with callstacks)

Step 1: Flat Profile

Answers a basic question:
 Where does my code spend its time?

Representation
 List of code elements

Varying granularity

Statements, Functions, …

 Time spent at each function

Flat profiles through sampling
 Alternative to overhead of direct measurements

 Add contributions taken from samples

 Requires sufficient number of samples

Running Usertime

Offline pcsamp Experiment – smg2000

Option 1: Basic syntax

osspcsamp “smg2000 –n 50 50 50”

Parameters

 Sampling frequency (samples per second)

 Additional parameter: high | low | default

OR actual frequency (default is 100)

Option 2: Explicit Syntax

openss –offline –f “smg2000 –n 50 50 50” pcsamp

Recommendation: compile code with –g to get statements!

Viewing Flat Profiles

Identifying Critical Regions

Profiles show computationally intensive

regions of the code
 First views: per functions or per statement

 Questions:
Are those functions/statements expected?

Do they match the computational kernels?

Any runtime functions?

Identify bottleneck components
 Profile aggregated by shared objects

 Correct/expected modules?

 Impact of support & runtime libraries

Adding Context

Missing information in flat profiles
 Distinguish routines call from multiple callers

 Understand invocation history

 Context for performance data

Critical technique: Stack traces
 Gather stack trace for each sample

 Aggregate only samples with equal trace

User perspective:
 Butterfly views (caller/callee relationships)

 Hot call paths

The Usertime Experiment

Provides inclusive/exclusive time

 Time spent inside a function

 Time spent in a function and its children

Similar to pcsamp experiment

 Collect pcsamp information

 Collect call stack information at every sample

Tradeoffs

 Additional context information

 Higher overhead/lower sampling rate

Running Usertime

Offline usertime Experiment – smg2000

Option 1: Basic syntax

ossusertime “smg2000 –n 50 50 50”

Parameters

 Sampling frequency (samples per second)

 Additional parameter: high | low | default

OR actual frequency (default is 35)

Option 2: Explicit Syntax

openss –offline –f “smg2000 –n 50 50 50” usertime

Recommendation: compile code with –g to get statements!

Viewing the Usertime Experiment

Default View
 Similar to pcsamp view from first example

 Calculates inclusive vs. exclusive times

Source Code Mapping

Exclusive raw data in left column

Interpreting Context data

Inclusive vs. exclusive times
 If similar: child executions are insignificant

May not be useful to profile below this layer

 If inclusive time >> exclusive time:
Execution mostly focus on children

Butterfly analysis
 Should be done on “suspicious” functions

 Shows split of time in callees and callers

Call Stack / Stack Traces Views

Hot Call Path

Butterfly View

Similar to well known gprof tool

Callers Of
hypre_SMGResidual

Callees Of
hypre_SMGResidual

Summary / Profiling

Profiling provides high-level information

on an application’s execution behavior
 Flat profiles show computational intensity

 Varying granularity

 Question: does this match intuition?

 O|SS execution: osspcsamp “<app>”

Adding context
 Inclusive vs. exclusive timings

 Caller/Callee data: butterfly views

 Full context: stack traces or call stacks

 OSS execution: ossusertime “<app>”

Section 4

How to Relate Data to

Architectural Properties?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

What Timing Alone Doesn‟t Tell

Timing information shows you where you

spend your time,

BUT: not why you spend time there
 Are computational intensive parts efficient?

 Which resources constrain execution?

Next: investigate App/HW interactions
 Efficient use of hardware resources

 Architectural units that are stressed

Often platform dependent
 Cause of missing performance portability

 Tuning to architectural parameters

The Memory System

Modern memory systems are complex
 Deep hierarchies

 NUMA behavior

 Streaming/prefetching

Key: locality

Information to look for
 Read/Write intensity

 Prefetch efficiency

 Cache miss rates at all levels

 TLB miss rates

 NUMA overheads

Other Architectural Features

Computational intensity
 Cycles per instructions (CPI)

 Number of floating point instructions

Branches
 Number of branches taken (pipeline flushes)

 Miss-speculations

System-wide information
 I/O busses

 Network counters

 Power/Temperature sensors

 BUT: not clear how to related to a process

Performance Counters

Most CPUs provide a set of counters
 Hardware to observe low level events

 Architecture dependent

 Semantic mapping hard

Newer components also include counters
 Network cards and switches

 Environmental sensors

Recommended: access through PAPI
 Abstraction for system specific layers

 API for tools & simple runtime tools

 http://icl.cs.utk.edu/papi/

Directly using PAPI

“papiex” provides end-to-end data
 Use: papiex “<app>”

 Overview printed after termination

 More options: papiex –h

Useful to get a quick overview
 Enables basic classification of codes

 Memory vs. computational intensive

 Find relevant counters

Missing information
 Relation to source code

 Execution context

The HWC Experiment

Provides access to hardware counters
 Detailed, low level information

 Examples: cache & TLB misses, bus accesses

 Time spent in a function and its children

Run until counter reaches threshold
 Record PC location and reset

 User selects counter to track and sets threshold

 Ideal threshold depends on application and

how often it invokes the observed counter

Two versions of the experiment:
 HWC = flat hardware counter profile

 HWCtime = profile with context / stacktraces

Selecting Counter/Threshold

Open|SpeedShop supports …
 Non-derived PAPI presets

All non derived events reported by “papi_avail –a”

Also reported by running osshwc[time]

 All native events
Architecture specific

Names listed in PAPI documentation

Thresholds depend on application
 Overhead vs. accuracy

 Rare events need small threshold

 Frequent events need high threshold

 Takes experience and/or trial & error

Running HWC / HWCtime

Offline hwc Experiment – smg2000

Option 1: Basic syntax

osshwc[time] “smg2000 –n 50 50 50” <counter> <threshold>

Option 2: Explicit Syntax

setenv OPENSS_HWC_EVENT <counter>

setenv OPENSS_HWC_THRESHOLD <threashold>

openss –offline –f “smg2000 –n 50 50 50” hwc[time]

Available counter

 Any counter reported by papi_avail or osshwc

 Must be marked as “available” and “not derived”

 Naïve counters listed in PAPI documentation

Examples of Counters

PAPI Name Description Threshold

PAPI_L1_DCM L1 data cache misses high

PAPI_L2_DCM L2 data cache misses high/medium

PAPI_L1_DCA L1 data cache accesses high

PAPI_FPU_IDL Cycles in which FPUs are idle high/medum

PAPI_STL_ICY Cycles with no instruction issue high/medium

PAPI_BR_MSP Mispredicted branchnes medium/low

PAPI_FP_INS Number of floating point instructions high

PAPI_LD_INS Number of load instructions high

PAPI_VEC_INS Number of vector/SIMD instructions high/medium

PAPI_HW_INT Number of hardware interrupts low

PAPI_TLB_TL Number of TLB misses low

Note: Threshold indications are just rough guidance and depend on the application

Not all counters exist on all applications (run papi_avail to find out)

Viewing HWC Data

• hwc Experiment – Default View – Counter=cycles

Interpreting Memory Data

Typical question:
 How well is my code exploiting locality?

 What is my cache behavior?

Step 1: Look for cache misses
 Counter in PAPI presets

 Event: PAPI_L1_DCM

 Threshold 100,000

Run experiment
 osshwc smg2000 PAPI_L1_DCM 100000

 Creates new database with miss data

Viewing L1 Miss Data

Interpreting L1 miss data

Miss numbers don’t tell much
 Is the number of misses good or bad?

 Is it in a relevant piece of code?

Need additional information
 Combine with flat profiles

 Get number of cache accesses
Miss rates

Need to run additional experiments
 osspcsamp smg2000

 osshwc smg2000 PAPI_L1_DCA 100000

Viewing Multiple Experiments

Tabs for all loaded

experiments

Button for custom

comparisons

Custom Comparisons

Goal: direct comparison of measurements
 Flat profile / time spent

 Number of cache accesses

 Number of cacha misses

O|SS concept: custom comparison
 Arbitrary number of metrics

 Placed in separate “columns”

 Each row shows multiple metrics for one location

Creating custom comparisons
1. Load all three experiments

2. Chose “CC” in one of the views

3. Add columns and select different experiments in each

4. Click on “Focus Stats Panel” (“FS”)

Custom Comparisons in O|SS

Tabs for all columns

used in comparison

Button to recreate

stats panel

Comparison Results

Summary / Hardware Counters

Hardware counter provide low level data
 Architecture-level information

 Interpretation often machine specific

Selection requires some architecture knowledge
 Meaning of counters

 Correct threshold

O|SS’s HWC experiment
 Select any PAPI event and threshold

 Display similar to profiles

Interpreting HWC experiments
 Use flat profiles as baslines

 Raw measurements often not useful

 Compare measurements with other counters

Section 5

How to Find I/O Bottlenecks?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Need for Understanding I/O

Could be significant percentage of execution:

o Checkpoint and viz I/O frequency

o I/O pattern in application: N-to-1 / N-to-N / …

o Kind of application: data intensive vs. traditional HPC

o File system (Lustre, Panfs, NFS, GPFS)

o I/O libraries – MPI-IO, hdf5, PLFS, etc.

o Other jobs stressing the I/O nodes on a system

Obvious candidates to explore first

o Use parallel file system

o Optimize for I/O pattern

o Match checkpoint I/O frequency to MTBI of system

o Use appropriate libraries (such as iobuf on Cray XTs)

I/O Performance Example

Application:
OOCORE benchmark from DOD HPCMO
 Out-of-core SCALPACK benchmark from UTK
 Can be configured to be disk I/O intensive
 Characterizes a very important class of HPC

application involving the use of Method of Moments
(MOM) formulation for investigating
Electromagnetics (e.g. Radar Cross Section,
Antenna design)

 Solves dense matrix equations by LU, QR or
Cholesky

 Reference: Benchmarking OOCORE, and out-of-
core Matrix Solver, By Drs. Samuel B. Cable and
Eduardo D‟Azevedo

Why use this example

Used by HPCMO to evaluate I/O system
scalability

For our needs this application or similar
out-of-core dense solver benchmarks help
to point out importance of the following in
performance analysis
 I/O overhead minimization
 Matrix Multiply kernel – possible to achieve close to

peak performance of the machine if tuned well
 „blocking‟ very important to understand for modern

processors (and HPC systems) with deep memory
hierarchies

Execution on Multi-Core Cluster
INPUT: testdriver.in

ScaLAPACK out-of-core LU,QR,LL
factorization input file

testdriver.out

6 device out

1 number of factorizations

LU factorization methods -- QR, LU,
or LT

1 number of problem sizes

31000 values of M

31000 values of N

1 values of nrhs

9200000 values of Asize

1 number of MB's and NB's

16 values of MB

16 values of NB

1 number of process grids

4 values of P

4 values of Q

Output from run on 16 cores

TIME M N MB NB NRHS P Q Fact/Solve Time Error Residual

---- ------ ------ --- --- ----- ----- --------------- ----------- --------

WALL 31000 31000 16 16 1 4 4 1842.20 1611.59 4.51E+15 1.45E+11

DEPS = 1.110223024625157E-016

sum(xsol_i) = (30999.9999999873,0.000000000000000E+000)

sum |xsol_i - x_i| = (3.332285336962339E-006,0.000000000000000E+000)

sum |xsol_i - x_i|/M = (1.074930753858819E-010,0.000000000000000E+000)

sum |xsol_i - x_i|/(M*eps) = (968211.548505533,0.000000000000000E+000)

Observe:

1) LU Fact time (Lustre)= 1842 secs; LU Fact time (NFS) =

2655 secs (delta t= 813 secs)

2) Application built with Intel 11.1, MVAPICH 1.1, mkl 11.1,

BLACS 1.1

Investigate File system Impact with OSS:

ossio ”/srun -N 1-n 16 ./testzdriver-std“

Nodes: Quad-Core/Quad-Sockets

Filesystem: NFS vs. Lustre

Step 1: Understand difference between

file systems
 Execute code on NFS & Lustre

 Same platform / different target directory

Two Open|SpeedShop experiments
 Running: ossio “oocore”

 Rename database between runs

Analysis
 Look at load balance information

 Compare the maximal runtime per rank

Results

Min t (secs) Max t (secs) Avg t (secs) call Function

1102.380076 1360.727283 1261.310157 __libc_read(/lib64/libpthread-2.5.so)

31.19218 99.444468 49.01867 __libc_write(/lib64/libpthread-2.5.so)

0.162285 0.30141 0.241362 llseek(/lib64/libpthread-2.5.so)

0.001505 0.029835 0.020403 __libc_open(/lib64/libpthread-2.5.so)

0.0005 0.0005 0.0005 __libc_open64(/lib64/libpthread-2.5.so)

0.000393 0.002367 0.001374 __libc_close(/lib64/libpthread-2.5.so)

Min t (secs) Max t (secs) Avg t (secs) call Function

368.898283 847.919127 508.658604 __libc_read(/lib64/libpthread-2.5.so)

6.27036 7.896153 6.850897 __libc_write(/lib64/libpthread-2.5.so)

0.646541 0.646541 0.646541 llseek(/lib64/libpthread-2.5.so)

0.06473 0.079408 0.072694 __libc_open(/lib64/libpthread-2.5.so)

0.00194 0.012322 0.007334 __libc_open64(/lib64/libpthread-2.5.so)

0.000548 0.111174 0.016195 __libc_close(/lib64/libpthread-2.5.so)

NFS RUN LUSTRE RUN

The run time difference 75% of 854 secs is mostly I/O:

(1360+99) – (847 +7) = 605 secs

OpenSpeedShop IO-experiment used to identify optimal lfs striping

(from load balance view (max, min & avg) for 16 way parallel run)

0

200

400

600

800

1000

1200

Stripe count=1 Stripe count=4 Stripe count=8 Stripe count=16

W
al

l T
im

e
, s

e
cs

OOCORE I/O performance; libc_read time from OpenSpeedShop

MAX

MIN

AVG

Additional I/O Capabilities

Extended I/O Tracing (iot experiment)

 Records each event in chronological order

 Collects Additional Information

Function Parameters

Function Return Value

When to use extended I/O tracing?
 When you want to trace the exact order of

events

 When you want to see the return values or bytes

read or written.

Summary

I/O Collectors

 Intercept All Calls to I/O Functions

 Record Current Stack Trace & Start/End Time

 Can Collect Detailed Ancillary Data (IOT)

Trace experiments

Collect large amounts of data

Allows for fine-grained analysis

Section 6

How to Find Bottlenecks in Parallel Codes?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Experiment Types

O|SS is designed to work on parallel jobs
 Support for threading and message passing

 Focus here: parallelism using MPI

Sequential experiments
 Apply experiment/collectors to all nodes

 By default display aggregate results

 Optional select individual groups of processes

MPI tracing experiments
 Tracing of MPI calls

 Similar to I/O tracing

 Also available with and without parameters
mpi vs. mpit

 OTF version

Integration with MPI

O|SS has been tested with a variety of MPIs

 Includes Open MPI, MPVAPICH, and MPICH-2

Identifying MPI tasks

 Online: through MPIR interface

 Offline: through PMPI preload

Running with MPI codes
 Add MPI starter as part of the executable name

 ossmpi “orterun –np 16 sweep3d.mpi”

 osspcsamp “mpirun -np 4 sweep3d.mpi”

 openss –offline –f “srun –N 4 –n 16 sweep3d.mpi” pcsamp

 openss –online –f “orterun –np 16 sweep3d.mpi” usertime

Parallel Result Analysis

Default views
 Values aggregated across all ranks
 Manually include/exclude individual processes

Rank comparisons
 Use Customize Stats Panel View
 Create columns for process groups

Cluster Analysis
 Automatically create process groups of similar

processes
 Available from Stats Panel context menu

Viewing Results by Process

Choice of ranks

MPI Tracing

Similar to I/O tracing
 Record all MPI call invocations

 By default: record call times (mpi)

 Optional: record all arguments (mpit)

Equal events will be aggregated
 Save space in database

 Reduce overhead

Public format:
 Full MPI traces in Open Trace Format (OTF)

Tracing Results: Default View

Tracing Results: Event View (default)

Tracing Results: Creating Event View

Tracing Results: Creating Specialized Event View

Use the Optional Views Dialog

box to choose the

performance metrics to be

displayed in the StatsPanel

and click OK

Clicking OK will regenerate the

StatsPanel with the new

metrics displayed

Tracing Results: Specialized Event View

Results / Show: Callstacks

Predefined Analysis Views

O|SS provides common analysis functions
 Designed for quick analysis of MPI applications
 Create new views in the StatsPanel
 Accessible through context menu or toolbar

Load Balance View
 Calculate min, max, average across ranks,

processes or threads

Comparative Analysis View
 Use “cluster analysis” algorithm to group like

performing ranks, processes, or threads.

Quick Min, Max, Average View

Load Balance View: “LB” in Toolbar

Comparative Analysis: Clustering Ranks

Comparative Analysis: “CA” in Toolbar

Comparing Ranks (1)

Use CustomizeStatsPanel

Create columns for each

process set to compare

Select set of ranks

for each column

Comparing Ranks (2)

Rank 0 Rank 1

Summary

Open|SpeedShop manages MPI jobs
 Works with multiple MPI implementations
 Process control using MPIR interface (dynamic)

Parallel experiments
 Apply sequential collectors to all nodes
 Specialized MPI tracing experiments

Results
 By default aggregated across results
 Optional: select individual processes
 Compare or group ranks & specialized views

Section 7

How can I repeat this at Home?

What else can I do with O|SS?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

System Requirements

System architecture

 AMD Opteron/Athlon

 Intel x86, x86-64, and Itanium-2

Operating system

 Tested on Many Popular Linux Distributions

SLES, SUSE

RHEL

Fedora Core, CentOS

Debian, Ubuntu

Varieties of the above

Getting the Source

Sourceforge Project Home

 http://sourceforge.net/projects/openss

CVS Access

 http://sourceforge.net/cvs/?group_id=176777

Packages

 Accessible From Project Home Download Tab

Additional Information

 http://www.openspeedshop.org/

http://www.openspeedshop.org/

Build tool overview

install.sh

Bash script used to build the components that

Open|SpeedShop uses and Open|SpeedShop

First will check to see if you have the correct supporting

software installed on your system

If not, will stop and ask you if you want to continue

Will, optionally, then build and install all the prerequisite

packages and also Open|SpeedShop itself

Can build and install one component at a time.

Builds and installs single or groups of components so

that the next components use the previous components.

Post-Installation Setup

Important runtime environment variables

 OPENSS_PREFIX (install directory path)

 OPENSS_PLUGIN_PATH

 Path to directory where plugins are stored

 OPENSS_MPI_IMPLEMENTATION (if multiple)

 If Open|SpeedShop was built with multiple MPI

implementations, this points openss at the one you are

using in your application

 Also, only required if using the mpi, mpit, or mpiotf

experiments

 LD_LIBRARY_PATH, PATH

 Linux path variables

Advanced Features Overview

Interactive analysis
 “Online”/”MRNet” mode

 Ability to attach

Advanced GUI features

Scripting Open|SpeedShop
 Using the command line interface

 Batch options

 Integrating O|SS into Python

 Interoperability

Interactive Analysis

Dynamic instrumentation
 Works on binaries

 Add/Change instrumentation

at runtime

 Dynamic attach

Hierarchical communication
 Efficient broadcast of commands

 Online data reduction

Interactive control
 Available through GUI and CLI

 Start/Stop/Adjust data collection

MPI Application

O|SS

MRNet

General GUI Features

GUI panel management
 Peel-off and rearrange any panel
 Color coded panel groups per experiment

Context sensitive menus
 Right click at any location
 Access to different views
 Activate additional panels

Access to source location of events
 Double click on stats panel
 Opens source panel with (optional) statistics

Leaving the GUI

Three different options to run without GUI
 Equal functionality

 Can transfer state/results

Interactive Command Line Interface
 openss -cli

Batch Interface
 openss -batch < openss_cmd_file

 openss –batch –f <exe> <experiment>

Python Scripting API
 python openss_python_script_file.py

CLI Language

An interactive command Line Interface
 gdb/dbx like processing

Several interactive commands
 Create Experiments

 Provide Process/Thread Control

 View Experiment Results

Where possible commands execute

asynchronously

http://www.openspeedshop.org/docs/cli_doc/

CLI Command Overview

Experiment creations
– expcreate

– expattach

Experiment control
– expgo

– expwait

– expdisable

– expenable

Experiment storage
– expsave

– exprestore

Result presentation
– expview

– opengui

Misc. commands
– help

– list

– log

– record

– playback

– history

– quit

CLI Command Examples

Simple usage to create, run, view data

openss –cli (use cli to run experiment: 3 commands)

expcreate –f “mutatee 2000” pcsamp (create an experiment with

instrumentation added for the particular collector)

expgo (runs the experiment gathering data into database)

expview (displays the default view of the performance data)

Alternative views of the performance data
expview –v statements (see the statements that took the most time)

expview –v linkedobjects (see time attributed to the libraries in appl.)

expview –v calltrees, fullstack (see all the call paths in application)

expview –m loadbalance (see the min, max, average across

ranks/threads)

list –v metrics (display the optional performance data metrics)

expview –m <metric from above> (view the metric specified)

User-Time Example

lnx17>openss -cli

openss>>Welcome to OpenSpeedShop 1.9.3.4

openss>>expcreate -f test/executables/

fred/fred usertime

The new focused experiment identifier is:-x 1

openss>>expgo

Start asynchronous execution of experiment:

-x 1

openss>>Experiment 1 has terminated.

Create experiments

and load application

named “fred”

Start application

Showing CLI Results

openss>>expview

Excl CPU time Inclu CPU time % of Total Exclusive Function

in seconds. in seconds. CPU Time (defining location)

5.2571 5.2571 49.7297 f3 (fred: f3.c,2)

3.3429 3.3429 31.6216 f2 (fred: f2.c,2)

1.9714 1.9714 18.6486 f1 (fred: f1.c,2)

0.0000 10.5429 0.0000 work(fred:work.c,2)

0.0000 10.5714 0.0000 main

(fred: fred.c,5)

CLI Batch Scripting (1)

Create batch file with CLI commands
 Plain text file

 Example:

Create batch file

echo expcreate -f fred pcsamp >> input.script

echo expgo >> input.script

echo expview pcsamp10 >>input.script

Run OpenSpeedShop

openss -batch < input.script

CLI Batch Scripting (2)

Open|SpeedShop batch example results

The new focused experiment identifier is: -x 1

Start asynchronous execution of experiment: -x 1

Experiment 1 has terminated.

CPU Time Function (defining location)

24.2700 f3 (mutatee: mutatee.c,24)

16.0000 f2 (mutatee: mutatee.c,15)

8.9400 f1 (mutatee: mutatee.c,6)

0.0200 work (mutatee: mutatee.c,33)

Python Scripting

Open|SpeedShop Python API that executes “same”

Interactive/Batch Open|SpeedShop commands

User can intersperse “normal” Python code with

Open|SpeedShop Python API

Run Open|SpeedShop experiments via the

Open|SpeedShop Python API

Summary

Multiple non-graphical interfaces
 Interactive Command Line

 Batch scripting

 Python module

Equal functionality
 Similar commands in all interfaces

Results transferable
 E.g., run in Python and view in GUI

 Possibility to switch GUI ↔ CLI

Summary / Advanced Features

Online instrumentation techniques
 Scalable data collection

 Ability to attach to running applications

Flexible GUI that can be customized

Several compatible scripting options
 Command Line Language

 Direct batch interface

 Integration of O|SS into Python

GUI and scripting interoperable

Plugin concept to extend Open|SpeedShop

Conclusions

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Questions vs. Experiments

Where do I spend my time?
 Flat profiles (pcsamp exp.)

 Getting inclusive/exclusive timings with callstacks (usertime exp.)

 Identifying hot callpaths (usertime exp. + HP analysis)

How do I analyze cache performance?
 Measure memory performance using hardware counters (hwc exp.)

 Compare to flat profiles (custom comparisons)

 Compare multiple hardware counters (additional hwc exp.)

How do I identify I/O problems?
 Study time spent in I/O routines (io exp.)

 Compare runs under different scenarios (comparisons)

How do I find parallel inefficiencies?
 Study load balance between tasks (LB view of pcsamp exp.)

 Study time spent in MPI routines (mpi exp.)

 Find outliers with cluster analysis (CA view)

O|SS Documentation

Current version: 1.9.3.4

Open|SpeedShop User Guide Documentation
 http://www.openspeedshop.org/docs/users_guide/

 /opt/OSS/share/doc/packages/OpenSpeedShop/users_guide
Where /opt/OSS is the installation directory

Python scripting API Documentation
 http://www.openspeedshop.org/docs/pyscripting_doc/

 /opt/OSS/share/doc/packages/OpenSpeedShop/pyscripting_doc
Where /opt/OSS is the installation directory

Command Line Interface Documentation
 http://www.openspeedshop.org/docs/cli_doc/

 /opt/OSS/share/doc/packages/OpenSpeedShop/cli_doc
Where /opt/OSS is the installation directory

Please : provide feedback!

http://www.openspeedshop.org/docs/users_guide/
http://www.openspeedshop.org/docs/pyscripting_doc/

Availability and Contact

Open|SpeedShop website:

http://www.openspeedshop.org/

Download options:
 Package with Install Script

 Source for tool and base libraries

Feedback
 Bug tracking available from website

 Contact information on website

 Feel free to contact presenters directly

http://www.openspeedshop.org/
http://www.openspeedshop.org/

